
How to Analyze the Performance

of Parallel Codes 101

A Case Study with Open|SpeedShop

Half Day Tutorial @ SciDAC 2010

Chattanooga, TN

Tutorial @ SciDAC 2010

Why this tutorial?

Performance Analysis is becoming

more and more important
 Complex architectures

 Complex applications

 Mapping applications onto architectures

Often hard to know where to start
 Which experiments to run first?

 How to plan follow on experiments?

 What kind of problems can be explored?

 How to interpret the data?

Tutorial Goals

Provide basic guidance on …
 How to understand the performance of a code?
 How to answer basic performance questions?
 How to plan experiments?

Basics on Open|SpeedShop
 Introduction into one possible solution
 Basic usage instructions
 Pointers to additional documentation

Provide you with the ability to …
 Run these experiments on your own code
 Provide starting point for performance

optimizations

Why Open|SpeedShop?

Open Source Performance Analysis Tool Framework
 Most common performance analysis steps all in one tool

 Extensible by using plugins for data collection and representation

Flexible and Easy to use
 User access through GUI, Command Line, and Python Scripting

Several Instrumentation Options
 All work on unmodified application binaries

 Offline and online data collection / attach to running applications

Target: Cluster systems and MPPs
 Linux Clusters with x86, IA-64, Opteron, and EM64T CPUs

 ADD BG/P & XT PORT

Status & Availability
 Version 1.9.3.4 about to be released / working on large lab codes

 Distribution and CVS access available through sourceforge.net

“Rules”

Let’s keep this interactive

 Feel free to ask as we go along

 Online demos as we go along

Feedback on O|SS

 What is good/missing in the tool?

 What should be done differently?

 Please report bugs/incompatibilities

Presenters

Martin Schulz, LLNL

Don Maghrak, Krell

Larger Team:

 Jim Galarowicz, Krell

 David Montoya, LANL

 Mahesh Rajan, Sandia

 William Hachfeld & Dave Whitney, Krell

 Samuel Gutierrez & Dane Gardner, LANL

 Scott Cranford & Joseph Kenny, Sandia NLs

 Chris Chambreau, LLNL

Outline

 Concepts in performance analysis

 Introduction into Open|SpeedShop

 How to understand profiles?

 How to relate data to architectural properties?

 How to find I/O bottlenecks?

 How to find bottlenecks in parallel codes?

 How can I repeat this at home?

What else can I do with O|SS?

Section 1

Concepts in Performance Analysis

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Development Cycle

Performance Tuning is an

essential part of development
 Part of development cycle

 Potential impact on every stage

 Should be done from initial stages

of code development

Typical use
 Measure performance

 Analyze data

 Modify code and/or algorithm

 Repeat measurements

 Analyze differences

Coding

Debugging

Tuning

Algorithm

Code/Binary

Correct Code

EfficientCode

Available Support

First line of defense
 Full execution timings

 Comparison between input parameters

 Historical trends

Disadvantage
 Coarse grain measurements

 Can‟t pin performance bottlenecks

 Alternative: code integration
Hard to maintain

Requires in-depth, a-priori code knowledge

Need for performance analysis tools

What Can Tools Do For You?

Gather fine grain performance data
 Low intrusive instrumentation

 Adaptive granularity

Relation to source code
 Connect performance to source lines

 Enable root cause analysis

But: usage is often a “black art”
 Many options and usage scenarios

 Interpretation of results often not intuitive

Questions: Sequential runs

Identify computational parts
 Where am I spending my time?

 Does this match intuition / computational kernels?

Impact of cache hierarchies
 Do I have excessive cache misses?

 How is my data locality?

 Impact of TLB misses?

External resources
 Is my I/O efficient?

 Shared libraries?

CPU

L1 Cache

L2 Cache

Main Memory

Memory

Questions: MPI Codes

Distributed memory model
 Sequential optimizations for each task

 Inter-process message optimizations

Issues to look for:
 Long blocking times

 High message rates

 Global collective operations

Node

Memory

Node

Memory

Application

MPI Library

NIC

Questions: Threaded Codes

Shared memory model
 Single shared storage accessible from all CPUs

 Most common models: POSIX threads, OpenMP

 Locality optimizations apply

Issues to look for:
 Shared memory buses/bandwidth

 Synchronization overhead

 Thread startup

 Sufficient work per thread?

Complications:
 NUMA architectures

Memory allocation policy?

 Architectural differences

CPU

L1

L2 Cache

Main Memory

CPU

L1

Two Types of Tools

Sampling Experiments
 Periodically interrupt run and record location

 Report statistical distribution of these locations

 Data aggregated over time

 Typically provides good overview

 Overhead mostly low and uniform

Tracing Experiments
 Gather and store individual application events,

e.g., function invocations (MPI, I/O, …)

 Keep timing information

 Provides detailed, low-level information

 Higher overhead, potentially bursty

Analysis Frameworks

All analysis options in one “box”
 Different experiments

 Combine tracing and sampling

 Integrated analysis options

 Uniform access to storing data

Advantage:
 Integrate into workflow only once

 Lower learning curve

 Reuse source annotations

 Easier installation and maintenance

Instrumentation Options

Instrumentation
 How to add data acquisition into codes?

 Integral part of any tools

Binary methods
 Library preloading/function interception

 Static binary rewriting

 Dynamic binary instrumentation

Source code methods
 Explicit user annotations

 Source-to-source transformation

 Compiler flags

Existing Tools

Basic OS tools
 time, gprof

Hardware counters
 PAPI APIs & tool set

 hwctime (AIX)

TAU (U. of Oregon)
 Comprehensive tool set

 Automatic source code

instrumentation

 3D visualization

HPC Toolkit (Rice)
 Binary preloading

 Sampled measurements

Scalasca (Juelich)
 Profiling

 Automatic trace analysis

Vendor tools
 Cray Pat

 Vtune (Intel)

 HPCToolkit (IBM)

Specialize tools
 Paradyn (U. of Wisc.)

Adaptive instrumentation

 Libra (LLNL)

Load balance analysis

Open|SpeedShop

How to Pick a Tool

Define the questions you want answered
 Overview vs. detailed measurements?

 What part of the system to look at?

 Needed: suspicion about ill-performing codes

Instrumentation approach
 Convenience wrt. workflow

 Affordable overhead

Frameworks
 Experiments vs. new tool

 Extent of planned performance analysis

 Generally lower learning curve overall

Section 2

Introduction into Open|SpeedShop

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Results

Experiment Workflow

R
u

n
Application

“Experiment”

Results can be

displayed using

several “Views”

Process

Management

Panel

Consists of one

or more data

“Collectors”

Stored in SQL

database

High-level Architecture

GUI pyO|SSCLI

AMD and Intel based clusters/SSI using Linux

CLI

Open Source

Software

Code

Instrumentation

E
x
p

e
rim

e
n

ts

Basic Interface

Step 1:
 Gather data from command line

 Example: osspcsamp “<application>”

 Create database

Step 2:
 Analyze data

in GUI

 Simple

graphics

 Relation to

source code

Advanced Interfaces

Scripting language
 Batch interface

 O|SS command line (CLI)

Python module

Experiment Commands

expAttach

expCreate

expDetach

expGo

expView

List Commands

list –v exp

list –v hosts

list –v src

Session Commands

setBreak

openGui

import openss

my_filename=openss.FileList("myprog.a.out")

my_exptype=openss.ExpTypeList("pcsamp")

my_id=openss.expCreate(my_filename,my_exptype)

openss.expGo()

My_metric_list = openss.MetricList("exclusive")

my_viewtype = openss.ViewTypeList("pcsamp”)

result = openss.expView(my_id,my_viewtype,my_metric_list)

Performance Experiments

Concept of an Experiment
 What to measure and analyze?

 Experiment chosen by user

 Any experiment can be applied to any code

Consists of Collectors and Views
 Collectors define specific data sources

Hardware counters

Tracing of library routines

 Views specify data aggregation and presentation

 Multiple collectors per experiment possible

Sampling Experiments

PC Sampling (pcsamp)
 Record PC in user defined time intervals

 Low overhead overview of time distribution

User Time (usertime)
 PC Sampling + Call stacks for each sample

 Provides inclusive & exclusive timing data

Hardware Counters (hwc, hwctime)
 Sample HWC overflow events

 Access to data like cache and TLB misses

 Default event is PAPI_TOT_CYC overflows

Tracing Experiments

I/O Tracing (io, iot)
 Record invocation of all POSIX I/O events

 Provides aggregate and individual timings

MPI Tracing (mpi, mpit, mpiotf)
 Record invocation of all MPI routines

 Provides aggregate and individual timings

Floating Point Exception Tracing (fpe)
 Triggered by any FPE caused by the code

 Helps pinpoint numerical problem areas

Parallel Experiments

O|SS supports MPI and threaded codes
 Tested with a variety of MPI implementation

 Thread support based on POSIX threads

 OpenMP supported through POSIX threads

Any experiment can be parallel
 Automatically applied to all tasks/threads

 Default views aggregate across all tasks/threads

 Data from individual tasks/threads available

Specific parallel experiments (e.g., MPI)

Running a First Experiment

① Picking the experiment
 What do I want to measure?

 We will start with pcsamp to get a first overview

② Launching the application
 How do I control my application under O|SS?

 osspcsamp “mpirun –np 2 smg2000 –n 80 80 80”

③ Storing the results
 O|SS will create a database

 Name: smg2000-pcsamp.openss

④ Exploring the gathered data
 O|SS will print default output

 Open GUI to analyze data in detail (run: openss)

Example Run with Output

osspcsamp “./smg2000 –n 80 80 80”

Example Run with Output

osspcsamp “./smg2000 –n 80 80 80”

Default Data View

Toolbar to switch Views

Performance Data

Default view: by Function

(Data is sum from all

processes and threads)

Graphical Representation

Statements Data View

Performance Data

S-icon: Statement View

Statement in Program

that took the most time

Associate Source & Data

Selected performance

data point

Double click to open

source window

Use window controls

to split/arrange windows

Summary

Open|SpeedShop is a comprehensive

framework for performance analysis
 Binary instrumentation at runtime

 Support for profiling and tracing

Predefined experiments
 Flat & Context profiles, hardware counters

 MPI, I/O, FPE tracing

Multiple user interfaces
 GUI, Batch, Interactive, Python

 Fully compatible

Section 3

How to Understand Profiles?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Using Profiles

What is a profile?

 Aggregate measurements (during collection)

 Over time and code sections

Why use a profile?

 Reduced size of performance data

 Typically collected with low overhead

 Provides good overview of performance

Disadvantages

 Require a-priori definition of aggregation

 Omits performance details of individual events

 Possible sampling frequency skew

Standard Profiling Techniques

Statistical Performance Analysis
 Interrupt execution in periodic intervals

 Record location of execution (PC value)

 Optionally annotate with additional data
Stack traces

Hardware counters

 Count equivalent samples

Advantages
 Low Overhead

 Low Perturbation

 Good to Get Overview / Find Hotspots

Sampling Experiments in O|SS

PC Sampling

 Approximates CPU Time For Line and Function

 No Call Stacks

 Script: osspcsamp

User Time

 Inclusive vs. Exclusive Time

 Includes Call stacks

 Script: ossusertime

HW Counters

 Samples Hardware Counter Overflows

 Script: osshwc and osshwctime (with callstacks)

Step 1: Flat Profile

Answers a basic question:
 Where does my code spend its time?

Representation
 List of code elements

Varying granularity

Statements, Functions, …

 Time spent at each function

Flat profiles through sampling
 Alternative to overhead of direct measurements

 Add contributions taken from samples

 Requires sufficient number of samples

Running Usertime

Offline pcsamp Experiment – smg2000

Option 1: Basic syntax

osspcsamp “smg2000 –n 50 50 50”

Parameters

 Sampling frequency (samples per second)

 Additional parameter: high | low | default

OR actual frequency (default is 100)

Option 2: Explicit Syntax

openss –offline –f “smg2000 –n 50 50 50” pcsamp

Recommendation: compile code with –g to get statements!

Viewing Flat Profiles

Identifying Critical Regions

Profiles show computationally intensive

regions of the code
 First views: per functions or per statement

 Questions:
Are those functions/statements expected?

Do they match the computational kernels?

Any runtime functions?

Identify bottleneck components
 Profile aggregated by shared objects

 Correct/expected modules?

 Impact of support & runtime libraries

Adding Context

Missing information in flat profiles
 Distinguish routines call from multiple callers

 Understand invocation history

 Context for performance data

Critical technique: Stack traces
 Gather stack trace for each sample

 Aggregate only samples with equal trace

User perspective:
 Butterfly views (caller/callee relationships)

 Hot call paths

The Usertime Experiment

Provides inclusive/exclusive time

 Time spent inside a function

 Time spent in a function and its children

Similar to pcsamp experiment

 Collect pcsamp information

 Collect call stack information at every sample

Tradeoffs

 Additional context information

 Higher overhead/lower sampling rate

Running Usertime

Offline usertime Experiment – smg2000

Option 1: Basic syntax

ossusertime “smg2000 –n 50 50 50”

Parameters

 Sampling frequency (samples per second)

 Additional parameter: high | low | default

OR actual frequency (default is 35)

Option 2: Explicit Syntax

openss –offline –f “smg2000 –n 50 50 50” usertime

Recommendation: compile code with –g to get statements!

Viewing the Usertime Experiment

Default View
 Similar to pcsamp view from first example

 Calculates inclusive vs. exclusive times

Source Code Mapping

Exclusive raw data in left column

Interpreting Context data

Inclusive vs. exclusive times
 If similar: child executions are insignificant

May not be useful to profile below this layer

 If inclusive time >> exclusive time:
Execution mostly focus on children

Butterfly analysis
 Should be done on “suspicious” functions

 Shows split of time in callees and callers

Call Stack / Stack Traces Views

Hot Call Path

Butterfly View

Similar to well known gprof tool

Callers Of
hypre_SMGResidual

Callees Of
hypre_SMGResidual

Summary / Profiling

Profiling provides high-level information

on an application’s execution behavior
 Flat profiles show computational intensity

 Varying granularity

 Question: does this match intuition?

 O|SS execution: osspcsamp “<app>”

Adding context
 Inclusive vs. exclusive timings

 Caller/Callee data: butterfly views

 Full context: stack traces or call stacks

 OSS execution: ossusertime “<app>”

Section 4

How to Relate Data to

Architectural Properties?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

What Timing Alone Doesn‟t Tell

Timing information shows you where you

spend your time,

BUT: not why you spend time there
 Are computational intensive parts efficient?

 Which resources constrain execution?

Next: investigate App/HW interactions
 Efficient use of hardware resources

 Architectural units that are stressed

Often platform dependent
 Cause of missing performance portability

 Tuning to architectural parameters

The Memory System

Modern memory systems are complex
 Deep hierarchies

 NUMA behavior

 Streaming/prefetching

Key: locality

Information to look for
 Read/Write intensity

 Prefetch efficiency

 Cache miss rates at all levels

 TLB miss rates

 NUMA overheads

Other Architectural Features

Computational intensity
 Cycles per instructions (CPI)

 Number of floating point instructions

Branches
 Number of branches taken (pipeline flushes)

 Miss-speculations

System-wide information
 I/O busses

 Network counters

 Power/Temperature sensors

 BUT: not clear how to related to a process

Performance Counters

Most CPUs provide a set of counters
 Hardware to observe low level events

 Architecture dependent

 Semantic mapping hard

Newer components also include counters
 Network cards and switches

 Environmental sensors

Recommended: access through PAPI
 Abstraction for system specific layers

 API for tools & simple runtime tools

 http://icl.cs.utk.edu/papi/

Directly using PAPI

“papiex” provides end-to-end data
 Use: papiex “<app>”

 Overview printed after termination

 More options: papiex –h

Useful to get a quick overview
 Enables basic classification of codes

 Memory vs. computational intensive

 Find relevant counters

Missing information
 Relation to source code

 Execution context

The HWC Experiment

Provides access to hardware counters
 Detailed, low level information

 Examples: cache & TLB misses, bus accesses

 Time spent in a function and its children

Run until counter reaches threshold
 Record PC location and reset

 User selects counter to track and sets threshold

 Ideal threshold depends on application and

how often it invokes the observed counter

Two versions of the experiment:
 HWC = flat hardware counter profile

 HWCtime = profile with context / stacktraces

Selecting Counter/Threshold

Open|SpeedShop supports …
 Non-derived PAPI presets

All non derived events reported by “papi_avail –a”

Also reported by running osshwc[time]

 All native events
Architecture specific

Names listed in PAPI documentation

Thresholds depend on application
 Overhead vs. accuracy

 Rare events need small threshold

 Frequent events need high threshold

 Takes experience and/or trial & error

Running HWC / HWCtime

Offline hwc Experiment – smg2000

Option 1: Basic syntax

osshwc[time] “smg2000 –n 50 50 50” <counter> <threshold>

Option 2: Explicit Syntax

setenv OPENSS_HWC_EVENT <counter>

setenv OPENSS_HWC_THRESHOLD <threashold>

openss –offline –f “smg2000 –n 50 50 50” hwc[time]

Available counter

 Any counter reported by papi_avail or osshwc

 Must be marked as “available” and “not derived”

 Naïve counters listed in PAPI documentation

Examples of Counters

PAPI Name Description Threshold

PAPI_L1_DCM L1 data cache misses high

PAPI_L2_DCM L2 data cache misses high/medium

PAPI_L1_DCA L1 data cache accesses high

PAPI_FPU_IDL Cycles in which FPUs are idle high/medum

PAPI_STL_ICY Cycles with no instruction issue high/medium

PAPI_BR_MSP Mispredicted branchnes medium/low

PAPI_FP_INS Number of floating point instructions high

PAPI_LD_INS Number of load instructions high

PAPI_VEC_INS Number of vector/SIMD instructions high/medium

PAPI_HW_INT Number of hardware interrupts low

PAPI_TLB_TL Number of TLB misses low

Note: Threshold indications are just rough guidance and depend on the application

Not all counters exist on all applications (run papi_avail to find out)

Viewing HWC Data

• hwc Experiment – Default View – Counter=cycles

Interpreting Memory Data

Typical question:
 How well is my code exploiting locality?

 What is my cache behavior?

Step 1: Look for cache misses
 Counter in PAPI presets

 Event: PAPI_L1_DCM

 Threshold 100,000

Run experiment
 osshwc smg2000 PAPI_L1_DCM 100000

 Creates new database with miss data

Viewing L1 Miss Data

Interpreting L1 miss data

Miss numbers don’t tell much
 Is the number of misses good or bad?

 Is it in a relevant piece of code?

Need additional information
 Combine with flat profiles

 Get number of cache accesses
Miss rates

Need to run additional experiments
 osspcsamp smg2000

 osshwc smg2000 PAPI_L1_DCA 100000

Viewing Multiple Experiments

Tabs for all loaded

experiments

Button for custom

comparisons

Custom Comparisons

Goal: direct comparison of measurements
 Flat profile / time spent

 Number of cache accesses

 Number of cacha misses

O|SS concept: custom comparison
 Arbitrary number of metrics

 Placed in separate “columns”

 Each row shows multiple metrics for one location

Creating custom comparisons
1. Load all three experiments

2. Chose “CC” in one of the views

3. Add columns and select different experiments in each

4. Click on “Focus Stats Panel” (“FS”)

Custom Comparisons in O|SS

Tabs for all columns

used in comparison

Button to recreate

stats panel

Comparison Results

Summary / Hardware Counters

Hardware counter provide low level data
 Architecture-level information

 Interpretation often machine specific

Selection requires some architecture knowledge
 Meaning of counters

 Correct threshold

O|SS’s HWC experiment
 Select any PAPI event and threshold

 Display similar to profiles

Interpreting HWC experiments
 Use flat profiles as baslines

 Raw measurements often not useful

 Compare measurements with other counters

Section 5

How to Find I/O Bottlenecks?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Need for Understanding I/O

Could be significant percentage of execution:

o Checkpoint and viz I/O frequency

o I/O pattern in application: N-to-1 / N-to-N / …

o Kind of application: data intensive vs. traditional HPC

o File system (Lustre, Panfs, NFS, GPFS)

o I/O libraries – MPI-IO, hdf5, PLFS, etc.

o Other jobs stressing the I/O nodes on a system

Obvious candidates to explore first

o Use parallel file system

o Optimize for I/O pattern

o Match checkpoint I/O frequency to MTBI of system

o Use appropriate libraries (such as iobuf on Cray XTs)

I/O Performance Example

Application:
OOCORE benchmark from DOD HPCMO
 Out-of-core SCALPACK benchmark from UTK
 Can be configured to be disk I/O intensive
 Characterizes a very important class of HPC

application involving the use of Method of Moments
(MOM) formulation for investigating
Electromagnetics (e.g. Radar Cross Section,
Antenna design)

 Solves dense matrix equations by LU, QR or
Cholesky

 Reference: Benchmarking OOCORE, and out-of-
core Matrix Solver, By Drs. Samuel B. Cable and
Eduardo D‟Azevedo

Why use this example

Used by HPCMO to evaluate I/O system
scalability

For our needs this application or similar
out-of-core dense solver benchmarks help
to point out importance of the following in
performance analysis
 I/O overhead minimization
 Matrix Multiply kernel – possible to achieve close to

peak performance of the machine if tuned well
 „blocking‟ very important to understand for modern

processors (and HPC systems) with deep memory
hierarchies

Execution on Multi-Core Cluster
INPUT: testdriver.in

ScaLAPACK out-of-core LU,QR,LL
factorization input file

testdriver.out

6 device out

1 number of factorizations

LU factorization methods -- QR, LU,
or LT

1 number of problem sizes

31000 values of M

31000 values of N

1 values of nrhs

9200000 values of Asize

1 number of MB's and NB's

16 values of MB

16 values of NB

1 number of process grids

4 values of P

4 values of Q

Output from run on 16 cores

TIME M N MB NB NRHS P Q Fact/Solve Time Error Residual

---- ------ ------ --- --- ----- ----- --------------- ----------- --------

WALL 31000 31000 16 16 1 4 4 1842.20 1611.59 4.51E+15 1.45E+11

DEPS = 1.110223024625157E-016

sum(xsol_i) = (30999.9999999873,0.000000000000000E+000)

sum |xsol_i - x_i| = (3.332285336962339E-006,0.000000000000000E+000)

sum |xsol_i - x_i|/M = (1.074930753858819E-010,0.000000000000000E+000)

sum |xsol_i - x_i|/(M*eps) = (968211.548505533,0.000000000000000E+000)

Observe:

1) LU Fact time (Lustre)= 1842 secs; LU Fact time (NFS) =

2655 secs (delta t= 813 secs)

2) Application built with Intel 11.1, MVAPICH 1.1, mkl 11.1,

BLACS 1.1

Investigate File system Impact with OSS:

ossio ”/srun -N 1-n 16 ./testzdriver-std“

Nodes: Quad-Core/Quad-Sockets

Filesystem: NFS vs. Lustre

Step 1: Understand difference between

file systems
 Execute code on NFS & Lustre

 Same platform / different target directory

Two Open|SpeedShop experiments
 Running: ossio “oocore”

 Rename database between runs

Analysis
 Look at load balance information

 Compare the maximal runtime per rank

Results

Min t (secs) Max t (secs) Avg t (secs) call Function

1102.380076 1360.727283 1261.310157 __libc_read(/lib64/libpthread-2.5.so)

31.19218 99.444468 49.01867 __libc_write(/lib64/libpthread-2.5.so)

0.162285 0.30141 0.241362 llseek(/lib64/libpthread-2.5.so)

0.001505 0.029835 0.020403 __libc_open(/lib64/libpthread-2.5.so)

0.0005 0.0005 0.0005 __libc_open64(/lib64/libpthread-2.5.so)

0.000393 0.002367 0.001374 __libc_close(/lib64/libpthread-2.5.so)

Min t (secs) Max t (secs) Avg t (secs) call Function

368.898283 847.919127 508.658604 __libc_read(/lib64/libpthread-2.5.so)

6.27036 7.896153 6.850897 __libc_write(/lib64/libpthread-2.5.so)

0.646541 0.646541 0.646541 llseek(/lib64/libpthread-2.5.so)

0.06473 0.079408 0.072694 __libc_open(/lib64/libpthread-2.5.so)

0.00194 0.012322 0.007334 __libc_open64(/lib64/libpthread-2.5.so)

0.000548 0.111174 0.016195 __libc_close(/lib64/libpthread-2.5.so)

NFS RUN LUSTRE RUN

The run time difference 75% of 854 secs is mostly I/O:

(1360+99) – (847 +7) = 605 secs

OpenSpeedShop IO-experiment used to identify optimal lfs striping

(from load balance view (max, min & avg) for 16 way parallel run)

0

200

400

600

800

1000

1200

Stripe count=1 Stripe count=4 Stripe count=8 Stripe count=16

W
al

l T
im

e
, s

e
cs

OOCORE I/O performance; libc_read time from OpenSpeedShop

MAX

MIN

AVG

Additional I/O Capabilities

Extended I/O Tracing (iot experiment)

 Records each event in chronological order

 Collects Additional Information

Function Parameters

Function Return Value

When to use extended I/O tracing?
 When you want to trace the exact order of

events

 When you want to see the return values or bytes

read or written.

Summary

I/O Collectors

 Intercept All Calls to I/O Functions

 Record Current Stack Trace & Start/End Time

 Can Collect Detailed Ancillary Data (IOT)

Trace experiments

Collect large amounts of data

Allows for fine-grained analysis

Section 6

How to Find Bottlenecks in Parallel Codes?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Experiment Types

O|SS is designed to work on parallel jobs
 Support for threading and message passing

 Focus here: parallelism using MPI

Sequential experiments
 Apply experiment/collectors to all nodes

 By default display aggregate results

 Optional select individual groups of processes

MPI tracing experiments
 Tracing of MPI calls

 Similar to I/O tracing

 Also available with and without parameters
mpi vs. mpit

 OTF version

Integration with MPI

O|SS has been tested with a variety of MPIs

 Includes Open MPI, MPVAPICH, and MPICH-2

Identifying MPI tasks

 Online: through MPIR interface

 Offline: through PMPI preload

Running with MPI codes
 Add MPI starter as part of the executable name

 ossmpi “orterun –np 16 sweep3d.mpi”

 osspcsamp “mpirun -np 4 sweep3d.mpi”

 openss –offline –f “srun –N 4 –n 16 sweep3d.mpi” pcsamp

 openss –online –f “orterun –np 16 sweep3d.mpi” usertime

Parallel Result Analysis

Default views
 Values aggregated across all ranks
 Manually include/exclude individual processes

Rank comparisons
 Use Customize Stats Panel View
 Create columns for process groups

Cluster Analysis
 Automatically create process groups of similar

processes
 Available from Stats Panel context menu

Viewing Results by Process

Choice of ranks

MPI Tracing

Similar to I/O tracing
 Record all MPI call invocations

 By default: record call times (mpi)

 Optional: record all arguments (mpit)

Equal events will be aggregated
 Save space in database

 Reduce overhead

Public format:
 Full MPI traces in Open Trace Format (OTF)

Tracing Results: Default View

Tracing Results: Event View (default)

Tracing Results: Creating Event View

Tracing Results: Creating Specialized Event View

Use the Optional Views Dialog

box to choose the

performance metrics to be

displayed in the StatsPanel

and click OK

Clicking OK will regenerate the

StatsPanel with the new

metrics displayed

Tracing Results: Specialized Event View

Results / Show: Callstacks

Predefined Analysis Views

O|SS provides common analysis functions
 Designed for quick analysis of MPI applications
 Create new views in the StatsPanel
 Accessible through context menu or toolbar

Load Balance View
 Calculate min, max, average across ranks,

processes or threads

Comparative Analysis View
 Use “cluster analysis” algorithm to group like

performing ranks, processes, or threads.

Quick Min, Max, Average View

Load Balance View: “LB” in Toolbar

Comparative Analysis: Clustering Ranks

Comparative Analysis: “CA” in Toolbar

Comparing Ranks (1)

Use CustomizeStatsPanel

Create columns for each

process set to compare

Select set of ranks

for each column

Comparing Ranks (2)

Rank 0 Rank 1

Summary

Open|SpeedShop manages MPI jobs
 Works with multiple MPI implementations
 Process control using MPIR interface (dynamic)

Parallel experiments
 Apply sequential collectors to all nodes
 Specialized MPI tracing experiments

Results
 By default aggregated across results
 Optional: select individual processes
 Compare or group ranks & specialized views

Section 7

How can I repeat this at Home?

What else can I do with O|SS?

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

System Requirements

System architecture

 AMD Opteron/Athlon

 Intel x86, x86-64, and Itanium-2

Operating system

 Tested on Many Popular Linux Distributions

SLES, SUSE

RHEL

Fedora Core, CentOS

Debian, Ubuntu

Varieties of the above

Getting the Source

Sourceforge Project Home

 http://sourceforge.net/projects/openss

CVS Access

 http://sourceforge.net/cvs/?group_id=176777

Packages

 Accessible From Project Home Download Tab

Additional Information

 http://www.openspeedshop.org/

http://www.openspeedshop.org/

Build tool overview

install.sh

Bash script used to build the components that

Open|SpeedShop uses and Open|SpeedShop

First will check to see if you have the correct supporting

software installed on your system

If not, will stop and ask you if you want to continue

Will, optionally, then build and install all the prerequisite

packages and also Open|SpeedShop itself

Can build and install one component at a time.

Builds and installs single or groups of components so

that the next components use the previous components.

Post-Installation Setup

Important runtime environment variables

 OPENSS_PREFIX (install directory path)

 OPENSS_PLUGIN_PATH

 Path to directory where plugins are stored

 OPENSS_MPI_IMPLEMENTATION (if multiple)

 If Open|SpeedShop was built with multiple MPI

implementations, this points openss at the one you are

using in your application

 Also, only required if using the mpi, mpit, or mpiotf

experiments

 LD_LIBRARY_PATH, PATH

 Linux path variables

Advanced Features Overview

Interactive analysis
 “Online”/”MRNet” mode

 Ability to attach

Advanced GUI features

Scripting Open|SpeedShop
 Using the command line interface

 Batch options

 Integrating O|SS into Python

 Interoperability

Interactive Analysis

Dynamic instrumentation
 Works on binaries

 Add/Change instrumentation

at runtime

 Dynamic attach

Hierarchical communication
 Efficient broadcast of commands

 Online data reduction

Interactive control
 Available through GUI and CLI

 Start/Stop/Adjust data collection

MPI Application

O|SS

MRNet

General GUI Features

GUI panel management
 Peel-off and rearrange any panel
 Color coded panel groups per experiment

Context sensitive menus
 Right click at any location
 Access to different views
 Activate additional panels

Access to source location of events
 Double click on stats panel
 Opens source panel with (optional) statistics

Leaving the GUI

Three different options to run without GUI
 Equal functionality

 Can transfer state/results

Interactive Command Line Interface
 openss -cli

Batch Interface
 openss -batch < openss_cmd_file

 openss –batch –f <exe> <experiment>

Python Scripting API
 python openss_python_script_file.py

CLI Language

An interactive command Line Interface
 gdb/dbx like processing

Several interactive commands
 Create Experiments

 Provide Process/Thread Control

 View Experiment Results

Where possible commands execute

asynchronously

http://www.openspeedshop.org/docs/cli_doc/

CLI Command Overview

Experiment creations
– expcreate

– expattach

Experiment control
– expgo

– expwait

– expdisable

– expenable

Experiment storage
– expsave

– exprestore

Result presentation
– expview

– opengui

Misc. commands
– help

– list

– log

– record

– playback

– history

– quit

CLI Command Examples

Simple usage to create, run, view data

openss –cli (use cli to run experiment: 3 commands)

expcreate –f “mutatee 2000” pcsamp (create an experiment with

instrumentation added for the particular collector)

expgo (runs the experiment gathering data into database)

expview (displays the default view of the performance data)

Alternative views of the performance data
expview –v statements (see the statements that took the most time)

expview –v linkedobjects (see time attributed to the libraries in appl.)

expview –v calltrees, fullstack (see all the call paths in application)

expview –m loadbalance (see the min, max, average across

ranks/threads)

list –v metrics (display the optional performance data metrics)

expview –m <metric from above> (view the metric specified)

User-Time Example

lnx17>openss -cli

openss>>Welcome to OpenSpeedShop 1.9.3.4

openss>>expcreate -f test/executables/

fred/fred usertime

The new focused experiment identifier is:-x 1

openss>>expgo

Start asynchronous execution of experiment:

-x 1

openss>>Experiment 1 has terminated.

Create experiments

and load application

named “fred”

Start application

Showing CLI Results

openss>>expview

Excl CPU time Inclu CPU time % of Total Exclusive Function

in seconds. in seconds. CPU Time (defining location)

5.2571 5.2571 49.7297 f3 (fred: f3.c,2)

3.3429 3.3429 31.6216 f2 (fred: f2.c,2)

1.9714 1.9714 18.6486 f1 (fred: f1.c,2)

0.0000 10.5429 0.0000 work(fred:work.c,2)

0.0000 10.5714 0.0000 main

(fred: fred.c,5)

CLI Batch Scripting (1)

Create batch file with CLI commands
 Plain text file

 Example:

Create batch file

echo expcreate -f fred pcsamp >> input.script

echo expgo >> input.script

echo expview pcsamp10 >>input.script

Run OpenSpeedShop

openss -batch < input.script

CLI Batch Scripting (2)

Open|SpeedShop batch example results

The new focused experiment identifier is: -x 1

Start asynchronous execution of experiment: -x 1

Experiment 1 has terminated.

CPU Time Function (defining location)

24.2700 f3 (mutatee: mutatee.c,24)

16.0000 f2 (mutatee: mutatee.c,15)

8.9400 f1 (mutatee: mutatee.c,6)

0.0200 work (mutatee: mutatee.c,33)

Python Scripting

Open|SpeedShop Python API that executes “same”

Interactive/Batch Open|SpeedShop commands

User can intersperse “normal” Python code with

Open|SpeedShop Python API

Run Open|SpeedShop experiments via the

Open|SpeedShop Python API

Summary

Multiple non-graphical interfaces
 Interactive Command Line

 Batch scripting

 Python module

Equal functionality
 Similar commands in all interfaces

Results transferable
 E.g., run in Python and view in GUI

 Possibility to switch GUI ↔ CLI

Summary / Advanced Features

Online instrumentation techniques
 Scalable data collection

 Ability to attach to running applications

Flexible GUI that can be customized

Several compatible scripting options
 Command Line Language

 Direct batch interface

 Integration of O|SS into Python

GUI and scripting interoperable

Plugin concept to extend Open|SpeedShop

Conclusions

How to Analyze the Performance of Parallel Codes 101

A Case Study with Open|SpeedShop

Tutorial @ SciDAC 2010

Questions vs. Experiments

Where do I spend my time?
 Flat profiles (pcsamp exp.)

 Getting inclusive/exclusive timings with callstacks (usertime exp.)

 Identifying hot callpaths (usertime exp. + HP analysis)

How do I analyze cache performance?
 Measure memory performance using hardware counters (hwc exp.)

 Compare to flat profiles (custom comparisons)

 Compare multiple hardware counters (additional hwc exp.)

How do I identify I/O problems?
 Study time spent in I/O routines (io exp.)

 Compare runs under different scenarios (comparisons)

How do I find parallel inefficiencies?
 Study load balance between tasks (LB view of pcsamp exp.)

 Study time spent in MPI routines (mpi exp.)

 Find outliers with cluster analysis (CA view)

O|SS Documentation

Current version: 1.9.3.4

Open|SpeedShop User Guide Documentation
 http://www.openspeedshop.org/docs/users_guide/

 /opt/OSS/share/doc/packages/OpenSpeedShop/users_guide
Where /opt/OSS is the installation directory

Python scripting API Documentation
 http://www.openspeedshop.org/docs/pyscripting_doc/

 /opt/OSS/share/doc/packages/OpenSpeedShop/pyscripting_doc
Where /opt/OSS is the installation directory

Command Line Interface Documentation
 http://www.openspeedshop.org/docs/cli_doc/

 /opt/OSS/share/doc/packages/OpenSpeedShop/cli_doc
Where /opt/OSS is the installation directory

Please : provide feedback!

http://www.openspeedshop.org/docs/users_guide/
http://www.openspeedshop.org/docs/pyscripting_doc/

Availability and Contact

Open|SpeedShop website:

http://www.openspeedshop.org/

Download options:
 Package with Install Script

 Source for tool and base libraries

Feedback
 Bug tracking available from website

 Contact information on website

 Feel free to contact presenters directly

http://www.openspeedshop.org/
http://www.openspeedshop.org/

